Архив автора: admin

Бесшовное резервирование Интернета: настройка Mikrotik с двумя провайдерами

настройка Микротика на 2-х провайдеров с

Настройка маршрутизаторов Mikrotik для двух интернет-провайдеров (ISP) с балансировкой нагрузки может значительно улучшить производительность, резервирование и надежность вашей сети. Технология балансировки нагрузки позволяет вашей сети распределять трафик между несколькими интернет-провайдерами, обеспечивая эффективное использование доступной полосы пропускания и минимизируя время простоя. В этой статье мы покажем вам процесс настройки маршрутизатора Mikrotik для двух провайдеров с балансировкой нагрузки, обеспечивая бесперебойную работу в Интернете для ваших пользователей. Читать

Midori 11.2: Новости новой версии доступны каждому

Midori 11.2: Новости новой версии доступны каждому

Midori 11.2: Новости новой версии доступны каждому

С тех пор прошло уже почти 3 года, с тех пор как наш последний пост о веб-браузере Midori 7.0, сегодня мы посвятим эту идеальную публикацию знанию текущих характеристик указанного бесплатного, открытого и бесплатного приложения и, конечно же, самых последних разработок, представленных в его последнем обновлении, версия которого «Мидори 11.2», от 16 декабря 2023 г..

И если вы один из тех, кто не знает или знает очень мало о веб-браузере Midori, важно прояснить, что: Браузер Midori, это в принципе альтернатива и полезная Веб-браузер бесплатного программного обеспечения с открытым исходным кодом, которое было создано с целью легкий, быстрый, безопасный. Более того, он разработан сторонником свободных, открытых и безопасных технологий под названием «Астиан Групп» который, в свою очередь, принадлежит Основы с таким же названием (Астиан).



Читать

Zulip 8 поставляется с улучшениями в целом, дизайном и многим другим.

зулип

Zulip — это приложение для командного чата с открытым исходным кодом, предназначенное для помощи людям в совместной работе.

Это было дано узнать о новой версии Zulip 8, который содержит более 4700 новых подтверждений, объединенных по всему проекту, начиная с версии 7.0, и среди примечательных функций выделяется то, что они включают новый вид почтового ящика, возможность следить за интересующими темами, множество улучшений дизайна и многое другое.

Для тех, кто не знает о Zulip, они должны знать, что серверная платформа для развертывания корпоративных мессенджеров подходит для организации коммуникации между сотрудниками и командами разработчиков.



Читать

Почему Intel готова воспользоваться преимуществами революции искусственного интеллекта

Искусственный интеллект (ИИ) — модное словечко 2023 года. И это правильно, поскольку технология во многих своих формах меняет образ жизни миллиардов людей. От отдыха до бизнеса и всего, что между ними, ИИ не затронет ни одну грань. Серьезной задачей для технологических компаний является внедрение значимого ИИ в любом масштабе. От центров обработки данных, заполненных стойками для интенсивного обучения, до клиентских устройств, на которых локально выполняются рабочие нагрузки, повышающие производительность, — Intel считает себя пионером в повсеместном внедрении ИИ. Давайте разберемся, почему.

Революция искусственного интеллекта

ИИ — чрезвычайно широкая церковь. В своей простейшей форме это способность компьютера имитировать обычное человеческое поведение, такое как решение проблем, понимание команд, обучение и рассуждение. Звучит надуманно, не правда ли, но Amazon Alexa или Apple Siri — это базовые формы искусственного интеллекта. На другом конце шкалы находятся более мощные решения, которые дают сложные, многоуровневые ответы на бесконечное количество вопросов. Я уверен, что нам всем было интересно попробовать модели больших языков (LLM) ChatGPT или Google Bard.

Ум, лежащий в основе ИИ, граничит с научной фантастикой. Глубокое обучение, возникшее на основе машинного обучения, существующего уже 50 лет, является основой большинства ИИ в том виде, в котором мы его знаем. Это ответвление использует нейронные сети для обработки массы данных – точно так же, как человеческий мозг понимает мир, накапливая информацию, которая в конечном итоге приводит к восприятию – и посредством итеративного процесса обучения, детерминизма и распознавания образов на потенциально миллиардах входных данных. хорошая модель эффективно понимает данные и позволяет получить полезную и точную информацию.

Хорошо настроенная модель искусственного интеллекта компьютерного зрения эффективно определяет, есть ли на случайном изображении кошка или собака, поскольку она понимает через тысячи или миллионы похожих изображений, подаваемых ей на этапе обучения, какие характеристики соответствуют каждому животному – четыре ноги и например, хвост у обоих общий. Именно это укоренившееся представление об общности и ассоциативности приводит к значимым результатам.

Точно так же складской поддон, велосипед или опухоль, хотя и совершенно разные друг от друга, обладают особыми характеристиками, которые помогают ИИ в классификации и идентификации.

Asus. Помощь в диагностике.

Asus. Помощь в диагностике.

 

Некоторые ИИ превосходно справляются с этим типом распознавания образов, что приносит непосредственную пользу, скажем, в медицинском мире. Мощные модели теперь лучше людей обнаруживают потенциальные заболевания путем экстраполяции деталей сканирования. Представьте себе облегчение, когда ИИ обнаружил аденому, которую уставший врач не по своей вине не смог обнаружить после 12-часового марафона. По сути, хороший искусственный интеллект устраняет большую часть человеческих ошибок, вызванных внешними факторами. Хорошо обученные алгоритмы не утомляют. Конечно, это не значит, что это идеальная наука: любая модель хороша настолько, насколько качество и количество введенных в нее данных. Но трудно утверждать, что ИИ – отличный инструмент, который можно использовать наряду с экспертными человеческими знаниями.

Кроме того, ИИ выходит далеко за рамки простого компьютерного зрения. Тот же базовый механизм распознавания образов, обучения и вывода полезен для создания нового контента, казалось бы, с нуля. Вы когда-нибудь удивлялись, когда генеративные модели искусственного интеллекта, такие как ChatGPT, за считанные секунды выдают абзацы полезной, контекстно-зависимой информации, или когда Stable Diffusion создает фотореалистичные изображения из базовых текстовых вводов? С ума сойти.

Почему Intel готова воспользоваться преимуществами революции искусственного интеллекта

 

Показательный пример. Я прошу Stable Diffusion XL создать картинку с текстовыми подсказками «злой мужчина на велосипеде». Это в духе Монти Пайтона, дон. ты так не думаешь?

 

От большого к маленькому

Чем больше человек что-то делает, тем лучше у него это получается. Так называемое правило 10 000 часов гласит, что практика любого навыка в течение этого периода времени приводит к тому, что экспонент становится экспертом в нем. То же самое относится и к ИИ, поскольку все более крупные и сложные модели дают более точные и полезные результаты. Несмотря на то, что с ней интересно играть, последняя версия ChatGPT использует, подождите, модель со 175 миллиардами параметров для генерации ответов, подобных человеческим.

«INTEL СЧИТАЕТ СЕБЯ ПИОНЕРОМ В ПОВСЕМЕСТНОМ ВНЕДРЕНИИ ИИ».

 

По-настоящему огромные вычислительные возможности, необходимые для обработки и извлечения значимой информации из миллиардов точек данных, остаются исключительной прерогативой облака. Передовой искусственный интеллект обязательно требует невероятных масштабов. Это тоже имеет смысл, поскольку удаленные центры обработки данных, битком набитые специализированным оборудованием, обрабатывают массу информации и во многих случаях возвращают практически мгновенные результаты. Требуемая мощность просто слишком велика для локальной обработки на настольном ПК, ноутбуке или даже в собственной серверной комнате. Такое положение дел остается в значительной степени справедливым и для комплексного обучения и формирования выводов и сегодня.

Локальный ИИ — это следующий большой шаг вперед.

Локальный ИИ — это следующий большой шаг вперед.

 

Тем не менее, мы повсюду вступаем в эпоху расцвета искусственного интеллекта. Это становится более личным. Хотя такие технологии, как ChatGPT, сами по себе являются чудесами, обеспечивая повсеместное распространение благодаря доступности Интернета практически в любой точке мира, предприятия и частные лица быстро поняли, что мелкомасштабный ИИ не менее полезен, прост в использовании и, возможно, более безопасен.

Мы только начинаем прикасаться к тому, как ИИ произведет революцию в бизнес-пространстве, и помяните мои слова, это произойдет на всех уровнях масштаба. Для офисного работника разве не было бы здорово, если бы на его собственном ноутбуке выполнялись оперативные языковые переводы, убедительные сводки совещаний и анализ данных, который требует усилий человека… без ожидания, обычно вызываемого онлайн-вариантами?

«ТЕМ НЕ МЕНЕЕ, МЫ ПОВСЮДУ ВСТУПАЕМ В ЭПОХУ РАСЦВЕТА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА. ЭТО СТАНОВИТСЯ БОЛЕЕ ЛИЧНЫМ».

Предприятия также могут получить выгоду, используя локальную обработку ИИ для более обыденных, но не менее важных действий. Компьютерное зрение позволяет управлять физическими объектами и обнаруживать вторжения. Общая эффективность работников повышается за счет использования ИИ в их обычных рабочих процессах. Существует множество других вариантов использования, в которых ИИ снимает часть бремени, налагаемого традиционным трудоемким подходом.

Эмпирические данные лучше всего. Как владелец малого бизнеса, я, конечно, не сторонник просматривать сотни электронных писем в поисках нужной темы, относящейся к непонятному запросу; Я бы предпочел, чтобы это сделала умная нейронная обработка, которая позволила бы мне сосредоточиться на более важных вещах. Локальный ИИ также имеет финансовые преимущества, поскольку он снижает неизбежно более высокие затраты, связанные с использованием исключительно облачного подхода.

Однако внедрение ИИ в каждый уголок — нетривиальная задача. Истинная демократизация требует обработки данных в облаке, на клиенте и на периферии, в гетерогенных архитектурах и стеках программного обеспечения. Понимая уникальные возможности для бизнеса, которые открываются на общем адресуемом рынке (TAM), исчисляемом десятками миллиардов долларов, Intel занята созданием инфраструктур, необходимых для повсеместного распространения искусственного интеллекта во всех отраслях и бизнес-сегментах.

 

План Intel по масштабному внедрению искусственного интеллекта

Спрос на ИИ остается ненасытным, если рассматривать его через призму мировых возможностей. Учитывая миллиарды фактически бестолковых устройств, которые служат просто конечными точками для облачной обработки, крупномасштабное обучение ИИ и получение выводов никуда не денутся. Хотя модели действительно работают на старом серверном оборудовании, обычно используемом для стандартных задач, таких как управление базами данных, транзакционные службы и веб-обслуживание, резкое изменение производительности требует переосмысления всей архитектуры.

Новые процессоры Intel Xeon твердо ориентированы на искусственный интеллект. Например, масштабируемая серия Xeon 4-го поколения отводит драгоценное пространство на кристалле для технологии, известной как Advanced Matrix Extensions (AMX). Используемый для обработки более простого искусственного интеллекта, математический AMX совместим с широко используемыми форматами данных – BFloat16 и int8 – и впоследствии помогает выполнять определенные новые рабочие нагрузки до 10 раз. быстрее, чем предыдущие поколения. Вот о каком поэтапном изменении я говорю.

Сегодняшнее присутствие серверного оборудования, оснащенного искусственным интеллектом, не случайно; это сделано намеренно, поскольку архитектура ЦП разрабатывается за много лет до начала производства. Новая линейка процессоров Xeon Max Series поддерживает до 64 ГБ оперативной памяти HBM2e, помогая выполнять высокопроизводительные вычисления (HPC) и рабочие нагрузки искусственного интеллекта. Дополнительная память помогает загружать большие наборы данных (если вы разбираетесь в искусственном интеллекте, вы понимаете, что рабочие нагрузки огромны) ближе к вычислительным механизмам и, следовательно, ускоряет обработку.