Писаржевский С.А. Институт атеросклероза 1.Последние успехи медицины старения. Быстрый прогресс был сделан в нашей способности модифицировать прогресс старения. Вместо того, чем быть периодом дебильности и ухудшения здоровья, для многих людей поздние годы жизни стали временем сохранения продуктивности, независимости и хорошего здоровья. Прогресс также был достигнут в увеличении продолжительности жизни. Ведущие причины смерти (сердечнососудистая болезнь, рак, легочная болезнь, диабет) являются результатами процессов, которые продолжались десятки лет. Используя современные знания можно задержать начало этих болезней. Этому может помочь выбор стиля жизни, включающий здоровую диету, упражнения, управление стрессом и использование пищевых добавок. Появляющиеся генные технологии позволят составлять индивидуальные программы, в то время как выявление болезней сердца и рака внесут свой вклад в увеличение продолжительности жизни. Ожидается, что использование биотехнологических терапий, в том числе стволовых клеток, рекомбинантных ДНК, достижений протеомики, терапевтического клонирования и генных терапий будут способствовать замедлению процесса старения. Мы находимся на пороге создания искусственного интеллекта и нанотехнологий. Искусственный интеллект приведет к слиянию нашего биологического мышления с продвинутыми формами интеллекта для увеличения нашей способности думать, создавать и чувствовать. Нанотехнологии в конце концов позволят нам построить аппараты, способные строить молекулы подобно тому, как это делают клеточные машины, по атомам. Целью современной медицины старения является способность предвосхищать болезнь и старение задолго вперед, чтобы дать возможность людям использовать мощные биотехнологические и нанотехнологические терапии, которые будут созданы в ближайшие декады. Будущие терапии имеют потенциал значительно увеличить продолжительность жизни/12/. Понимание механизмов, лежащих в основе долголетия, и стремление облегчить слабость и хрупкость в пожилом возрасте требуют всестороннего подхода, который учитывает различные теоретические и экспериментальные подходы. Значительное количество данных в настоящее время указывают на определенные гены, связанные с исключительным долголетием у людей. На первый план выходят и негенетические эффекты, включающие физическую, умственную и социальную активности/10/. Более сорока лет прошло с оригинальной публикации Hayflick и Moorhead, в которой было изложена концепция ‘лимита Hayflick’,т.е. максимального числа делений, которые соматические клетки претерпевают in vitro. Эта концепция до сих пор рассматривается как фундаментальная характеристика продолжительности жизни видов. Но есть другая характеристика соматических клеток, продолжительность их выживания in vitro в неделящимся состоянии после прекращения пролиферации. Она была предложена на основании результатов недавних экспериментов с так называемыми японскими ускоренно старящимися мышами. Результаты этих экспериментов выявили хорошую корреляцию между продолжительностью жизни у мышей, числом делений их фибробластов in vitro и продолжительностью выживания этих клеток в неделящимся состоянии. В рутинных культуральных условиях выживание клеток может быть очень длительным, в течение несколькиз лет. Однако, когда клетки растут в условиях окислительного стресса, продолжительность жизни клеток существенно сокращается. Этот новый тест может служить дополнительным маркером продолжительности жизни организма. Относительная ценность обоих тестов, классического 'лимита Hayflick' и нового теста обсуждается/37/. Таким образом, . ожидается, что использование биотехнологических терапий, в том числе стволовых клеток, рекомбинантных ДНК, достижений протеомики, терапевтического клонирования и генных терапий будут способствовать замедлению процесса старения. Значительное количество данных в настоящее время указывают на определенные гены, связанные с исключительным долголетием у людей. 2.Замещение или восстановление? Общепринято, что старение является феноменом необратимым, неизбежным и всеобщим и связано с потерей паренхимы и функциональным спадом. Следовательно, основными целями исследований по старению являются развитие стратегий по замещению стареющих органов или клеток, основанных на инструментах придания бессмертия, стволовых клетках или искусственных заместителей. Недавно, однако, новая концепция функционального восстановления
была предложена на основе функционального восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста. Было показано, что стареющие фенотипы гипореактивности и морфологических изменений хорошо восстанавливаются путем модуляции нескольких мембрано – связанных молекул, называемых привратниками, среди которых кавеолин является одной из основных детерминант. Кавеолин является важнейшим компонентом кавеолы, ответственным за регуляцию сигнальной трансдукции, эндоцитоз и трансцитоз и перестройку цитоскелетов чtрез его поддерживающий домен. Статус кавеолина строго связан с клеточной трансформацией при его истощении и со стареющим фенотипом при оверэкспрессии. Поэтому, простое снижение статуса кавеолина в стареющих клетках ведет к восстановлению чувствительности к митогенным стимулам и даже к восстановлению формы клеток. Эти данные являются сильным подтверждением точки зрения, что молекулы – привратники, представленные кавеолином, могут играть главную роль в определении стареющих фенотипов. Исходя из этих результатов может быть выведено, что принцип замещения не обязательно должен быть основным, но принцип восстановления может его заменить для коррекции состояния стареющих клеток и организмов/22/. Таким образом, новая концепция функционального восстановления была предложена на основе восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста. 3.Клеточное старение. Старение клеток является событием, которое происходит во всех нормальных клетках. Клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Они прекращают делиться и в конце концов умирают. В соответствии с этим ожидаемая продолжительность жизни в установленной культуре леток зависит от возраста донора. Клетки, приобретшие бессмертие, через кризисный перод трансформации за счет воздействия химических веществ или вирусов, точно так же, как линии злокачественных клеток в целом, обладают способностью делиться неопределенно долго. Другая форма клеточной смерти, апоптоз, или программируемая клеточная смерть, происходит во многих физиологических ситуациях, например, при дифференцировке кератиноцитов/17/. Наука о старении клеток называется цитогеронтология. Продолжительность жизни нормальных диплоидных клеток в культуре ограничена, находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и др.)/31/. Большинство клеток млекопитающих при помещении в культуру претерпевают ограниченное число клеточных делений перед тем, как переходят в нечувствительное непролиферирующе состояние, называемое старением. Однако, несколько путей, которые активируются по одиночке или совместно могут помочь клеткам обойти старение по крайней мере на ограниченные периоды времени. Они включают теломеразный путь, требующийся для поддержания теломерных концов, и пути p53 и Rb, требующиеся для направления старения в ответ на повреждения ДНК, сокращение теломеров и митогенные сигналы, и путь подобного инсулину ростового фактора, который может регулировать продолжительность жизни и клеточную пролиферацию. Эмбриональные стволовые клетки бессмертны, потому что эти пути в них строго регулируются/20/. Таким образом, клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Продолжительность жизни нормальных диплоидных клеток в культуре находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и др.). 4.Гематопоэтические стволовые клетки (ГСК) и атеросклероз. Старение представляет собой самый значительный фактор риска для развития атеросклероза и атеросклеротических тромбоэмболических осложнений. Но механизмы, посредством которых возраст влияет на артериальную стенку и ее повреждение остаются по существу не охарактеризованы. Хронические повреждения артериальной стенки вносят вклад в развитие атеросклероза. Однако, важно заметить, что комплексная система репарации включает как локальные , так и происходящие из костного мозга мозга клетки, обеспечивающие гомеостаз и целостность артерии. Зависящий от возраста отказ костного мозга продуцировать сосудистые прогениторные клетки, ответственные за восстановление артерий – неспособность, которая вызвана длящимися в течение всей жизни факторами, такими, как гипрлипедемия, способствует развитию атеросклероза и его тромбоэмболических осложнений. Как по
следствие такого отказа, нормальный процесс восстановления артериальной стенки и омоложения нарушается. Нарушение равновесия между повреждением артериальной стенки и ее восстановлением ведет к атеросклеротическому воспалению и последующими тромбоэмболическими осложнениями. Костный мозг и происходящие из него прогениторные клетки представляют собой ключевые регуляторы атеросклероза, и прогресс в предотвращении и лечении атеросклероза и его тромбоэмболических осложнений должен осуществляться с учетом этого измерения процесса болезни/11/. Таким образом, угасание костного мозга и уменьшение его способности продуцировать сосудистые прогениторные клетки, ответственные за восстановление артерий – неспособность, которая вызвана длящимися в течение всей жизни факторами, такими, как гипрлипедемия, способствует развитию атеросклероза и его тромбоэмболических осложнений. 5.Стволовые клетки и старение. Исследования по обнаружению генов, регулирующих стволовые клетки, обычно принимают одну из двух различных линий исследования. Прямой генетический подход начинает с измеримых фенотипических отличий к генетическому полиморфизму и, как предполагает имя, путь исследования имеет обратный порядок при использовании обратной генетики. Число вновь открываемых локусов, ответственных за специфические для стволовых клеток фенотипы и функционирование увеличивается с большой скоростью вследствие успеха обоих подходов. Эти локусы регулируют стволовые клетки внутренними (клеточно-автономными) и/или внешними механизмами и диктуют судьбу стволовых клеток В течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как предполагают, влияют как на скорость старения, так и на продолжительность жизни организма/19/. На самых ранних стадиях эмбрионального развития клетки обладают способностью неограниченно делиться и затем дифференцироваться в различные типы клеток тела. Недавние исследования выявили, что большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма. Межклеточные сигналы, которые контролируют пролиферацию, дифференцировку и выживание стволовых клеток были идентифицированы и включены в набор различных факторов роста, цитокинов и молекул клеточной адгезии. Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают установленные пути вторичных мессенджеров, новые транскрипционные факторы и теломеразу. Возможность того, что уменьшение числа или пластичности популяций стволовых клеток вносит вклад в старение и связанную со старением болезнь вытекает из последних открытий. Замечательная пластичность стволовых клеток заставляет предположить, что эндогенные или трансплантированные стволовые клетки могут быть могут быть использованы в путях, которые позволят им возмещать потерю дисфункциональной клеточной популяции при болезнях от нейродегенеративных и гематопоэтических расстройств до диабета и сердечнососудистой болезни/25/. Роль стволовых клеток в многоярусной организации структуры ткани увеличивает потенциал долгожительства в многоклеточном организме. Эта роль может быть ответственна за механизм эволюции самих стволовых клеток. Успешное развитие тканевых терапий и управление ими должно проводиться с учетом принципов работы этого механизма/27/. Целями настоящего обзора являются, во-первых, критически рассмотреть, что известно о влиянии старения на стволовые клетки в целом и на гематопоэтические клетки в частности. Во-вторых, приведены данные в поддержку гипотезы, что старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих. Старение оказывает количественное и качественное влияние на стволовые клетки. В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами, включая сигналы от стромы. Хотя гематопоэз обычно поддерживается на нормальном и поддерживающим жизнь уровнях в течение нормального старения, сниженная функция становится очевидной, когда стволовые клетки подвергаются стрессу. Существует достаточно данных об уменьшении способности к самообновлению, ограничении широты способности к развитию и уменьшении числа потомства у старых стволовых клеток, под
вергшихся гематопоэтическим требованиям. Сделано предсказание, что пластичность в потенциале развития, которой обладают молодые стволовые клетки, теряется в ходе старения. Те части мира, где растут стандарты жизни, там также возрастает доля пожилых в населении. Влияние старения на многие физиологические функции не является хорошо изученным и оцененным. Общественная необходимость обеспечить улучшение качества жизни для этого растущего сегмента популяции требует большего внимания к особенностям старения в экспериментальных исследованиях. Исследование популяций стволовых клеток вероятно будут плодотворными исследованиями такого типа/34/. Стволовые клетки определяются по их большой способности к самообновлнию, но тем не менее есть множество свидетельств снижения функционирования стволовых клеток во время старения. В то время как внутриклеточное восстановление и защитные механизмы определяют продолжительность жизни отдельных клеток, существуют аргументы, что соматические стволовые клетки определяют продолжительность жизни всей ткани, и поэтому играют ключевую роль в процессе старения организма. Недавно было показано, что потенциал развития соматических стволовых клеток может быть гораздо больше, чем считалось ранее. Хотя механизмы, регулирующие пластичность стволовых клеток далеки от ясности, стоит обсудить потенциальную значимость этих открытий для познания процесса старения/5/.. Таким образом, в течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как предполагают, влияют как на скорость старения, так и на продолжительность жизни организма. . В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами. Большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма. Межклеточные сигналы, которые контролируют пролиферацию, дифференцировку и выживание стволовых клеток были идентифицированы (факторов роста, цитокинов и молекул клеточной адгезии). Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают установленные пути вторичных мессенджеров, новые транскрипционные факторы и теломеразу. Старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих. В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами 6.Теломеры и теломераза при старении. Экспрессия теломеразы подавляется рано в развитии во всех нормальных человеческих соматических тканях, в то время как активность и экспрессия РНК компонента этого энзима происходит почти во всех случаях злокачественной трансформации и рака поздней стадии. Теломерная гипотеза старения и бессмертия постулирует, что достаточная потеря теломеров на одной или нескольких хромосомах в нормальных соматических клетках спо- собствует клеточному старению, в то время, как реактивация энзима необходима для бессмертия клетки. Проведены змерения длины теломеров и активности теломеразы при раке и в ходе нормального и ускоренного старения в коже, крови, гематопоэтических клетках, клетках скелетной мускулатуры, сосудистых и центральной нервной системы . Исследования в культуре клеток старения и трансформации увеличили наше понимание динамики теломеров в этом процессе. Изменения в репрессии теломеразы и смертности соматических клеток у долгоживущих организмов согласуются с антогонистичными плейортропными моделями, в которых клеточное старение является супрессором механизмом для рака: Обязательное подавление теломеразы имеет благоприятный ранний эффект по уменьшению вероятности рака, но вредный неселективный поздний эффект, связанный с его вкладом в эту связанную с возрастом болезнь/13/. Молулярная регуляция длины теломеров была объяснена серией элегантных исследований в течение последней декады. В более недавнее время были получены данные по вопросам о том вносит ли вклад регуляция длины теломеров в нормальный процесс старения или болезни у человека и как именно она это делает. Последние исследования на мышах выявили прецендент у млекопитающих, указывающий на то, что дефицит теломеразы может вести к дисфункции in vivo, наиболее вероят
была предложена на основе функционального восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста. Было показано, что стареющие фенотипы гипореактивности и морфологических изменений хорошо восстанавливаются путем модуляции нескольких мембрано – связанных молекул, называемых привратниками, среди которых кавеолин является одной из основных детерминант. Кавеолин является важнейшим компонентом кавеолы, ответственным за регуляцию сигнальной трансдукции, эндоцитоз и трансцитоз и перестройку цитоскелетов чtрез его поддерживающий домен. Статус кавеолина строго связан с клеточной трансформацией при его истощении и со стареющим фенотипом при оверэкспрессии. Поэтому, простое снижение статуса кавеолина в стареющих клетках ведет к восстановлению чувствительности к митогенным стимулам и даже к восстановлению формы клеток. Эти данные являются сильным подтверждением точки зрения, что молекулы – привратники, представленные кавеолином, могут играть главную роль в определении стареющих фенотипов. Исходя из этих результатов может быть выведено, что принцип замещения не обязательно должен быть основным, но принцип восстановления может его заменить для коррекции состояния стареющих клеток и организмов/22/. Таким образом, новая концепция функционального восстановления была предложена на основе восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста. 3.Клеточное старение. Старение клеток является событием, которое происходит во всех нормальных клетках. Клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Они прекращают делиться и в конце концов умирают. В соответствии с этим ожидаемая продолжительность жизни в установленной культуре леток зависит от возраста донора. Клетки, приобретшие бессмертие, через кризисный перод трансформации за счет воздействия химических веществ или вирусов, точно так же, как линии злокачественных клеток в целом, обладают способностью делиться неопределенно долго. Другая форма клеточной смерти, апоптоз, или программируемая клеточная смерть, происходит во многих физиологических ситуациях, например, при дифференцировке кератиноцитов/17/. Наука о старении клеток называется цитогеронтология. Продолжительность жизни нормальных диплоидных клеток в культуре ограничена, находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и др.)/31/. Большинство клеток млекопитающих при помещении в культуру претерпевают ограниченное число клеточных делений перед тем, как переходят в нечувствительное непролиферирующе состояние, называемое старением. Однако, несколько путей, которые активируются по одиночке или совместно могут помочь клеткам обойти старение по крайней мере на ограниченные периоды времени. Они включают теломеразный путь, требующийся для поддержания теломерных концов, и пути p53 и Rb, требующиеся для направления старения в ответ на повреждения ДНК, сокращение теломеров и митогенные сигналы, и путь подобного инсулину ростового фактора, который может регулировать продолжительность жизни и клеточную пролиферацию. Эмбриональные стволовые клетки бессмертны, потому что эти пути в них строго регулируются/20/. Таким образом, клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Продолжительность жизни нормальных диплоидных клеток в культуре находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и др.). 4.Гематопоэтические стволовые клетки (ГСК) и атеросклероз. Старение представляет собой самый значительный фактор риска для развития атеросклероза и атеросклеротических тромбоэмболических осложнений. Но механизмы, посредством которых возраст влияет на артериальную стенку и ее повреждение остаются по существу не охарактеризованы. Хронические повреждения артериальной стенки вносят вклад в развитие атеросклероза. Однако, важно заметить, что комплексная система репарации включает как локальные , так и происходящие из костного мозга мозга клетки, обеспечивающие гомеостаз и целостность артерии. Зависящий от возраста отказ костного мозга продуцировать сосудистые прогениторные клетки, ответственные за восстановление артерий – неспособность, которая вызвана длящимися в течение всей жизни факторами, такими, как гипрлипедемия, способствует развитию атеросклероза и его тромбоэмболических осложнений. Как по
следствие такого отказа, нормальный процесс восстановления артериальной стенки и омоложения нарушается. Нарушение равновесия между повреждением артериальной стенки и ее восстановлением ведет к атеросклеротическому воспалению и последующими тромбоэмболическими осложнениями. Костный мозг и происходящие из него прогениторные клетки представляют собой ключевые регуляторы атеросклероза, и прогресс в предотвращении и лечении атеросклероза и его тромбоэмболических осложнений должен осуществляться с учетом этого измерения процесса болезни/11/. Таким образом, угасание костного мозга и уменьшение его способности продуцировать сосудистые прогениторные клетки, ответственные за восстановление артерий – неспособность, которая вызвана длящимися в течение всей жизни факторами, такими, как гипрлипедемия, способствует развитию атеросклероза и его тромбоэмболических осложнений. 5.Стволовые клетки и старение. Исследования по обнаружению генов, регулирующих стволовые клетки, обычно принимают одну из двух различных линий исследования. Прямой генетический подход начинает с измеримых фенотипических отличий к генетическому полиморфизму и, как предполагает имя, путь исследования имеет обратный порядок при использовании обратной генетики. Число вновь открываемых локусов, ответственных за специфические для стволовых клеток фенотипы и функционирование увеличивается с большой скоростью вследствие успеха обоих подходов. Эти локусы регулируют стволовые клетки внутренними (клеточно-автономными) и/или внешними механизмами и диктуют судьбу стволовых клеток В течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как предполагают, влияют как на скорость старения, так и на продолжительность жизни организма/19/. На самых ранних стадиях эмбрионального развития клетки обладают способностью неограниченно делиться и затем дифференцироваться в различные типы клеток тела. Недавние исследования выявили, что большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма. Межклеточные сигналы, которые контролируют пролиферацию, дифференцировку и выживание стволовых клеток были идентифицированы и включены в набор различных факторов роста, цитокинов и молекул клеточной адгезии. Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают установленные пути вторичных мессенджеров, новые транскрипционные факторы и теломеразу. Возможность того, что уменьшение числа или пластичности популяций стволовых клеток вносит вклад в старение и связанную со старением болезнь вытекает из последних открытий. Замечательная пластичность стволовых клеток заставляет предположить, что эндогенные или трансплантированные стволовые клетки могут быть могут быть использованы в путях, которые позволят им возмещать потерю дисфункциональной клеточной популяции при болезнях от нейродегенеративных и гематопоэтических расстройств до диабета и сердечнососудистой болезни/25/. Роль стволовых клеток в многоярусной организации структуры ткани увеличивает потенциал долгожительства в многоклеточном организме. Эта роль может быть ответственна за механизм эволюции самих стволовых клеток. Успешное развитие тканевых терапий и управление ими должно проводиться с учетом принципов работы этого механизма/27/. Целями настоящего обзора являются, во-первых, критически рассмотреть, что известно о влиянии старения на стволовые клетки в целом и на гематопоэтические клетки в частности. Во-вторых, приведены данные в поддержку гипотезы, что старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих. Старение оказывает количественное и качественное влияние на стволовые клетки. В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами, включая сигналы от стромы. Хотя гематопоэз обычно поддерживается на нормальном и поддерживающим жизнь уровнях в течение нормального старения, сниженная функция становится очевидной, когда стволовые клетки подвергаются стрессу. Существует достаточно данных об уменьшении способности к самообновлению, ограничении широты способности к развитию и уменьшении числа потомства у старых стволовых клеток, под
вергшихся гематопоэтическим требованиям. Сделано предсказание, что пластичность в потенциале развития, которой обладают молодые стволовые клетки, теряется в ходе старения. Те части мира, где растут стандарты жизни, там также возрастает доля пожилых в населении. Влияние старения на многие физиологические функции не является хорошо изученным и оцененным. Общественная необходимость обеспечить улучшение качества жизни для этого растущего сегмента популяции требует большего внимания к особенностям старения в экспериментальных исследованиях. Исследование популяций стволовых клеток вероятно будут плодотворными исследованиями такого типа/34/. Стволовые клетки определяются по их большой способности к самообновлнию, но тем не менее есть множество свидетельств снижения функционирования стволовых клеток во время старения. В то время как внутриклеточное восстановление и защитные механизмы определяют продолжительность жизни отдельных клеток, существуют аргументы, что соматические стволовые клетки определяют продолжительность жизни всей ткани, и поэтому играют ключевую роль в процессе старения организма. Недавно было показано, что потенциал развития соматических стволовых клеток может быть гораздо больше, чем считалось ранее. Хотя механизмы, регулирующие пластичность стволовых клеток далеки от ясности, стоит обсудить потенциальную значимость этих открытий для познания процесса старения/5/.. Таким образом, в течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как предполагают, влияют как на скорость старения, так и на продолжительность жизни организма. . В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами. Большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма. Межклеточные сигналы, которые контролируют пролиферацию, дифференцировку и выживание стволовых клеток были идентифицированы (факторов роста, цитокинов и молекул клеточной адгезии). Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают установленные пути вторичных мессенджеров, новые транскрипционные факторы и теломеразу. Старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих. В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами 6.Теломеры и теломераза при старении. Экспрессия теломеразы подавляется рано в развитии во всех нормальных человеческих соматических тканях, в то время как активность и экспрессия РНК компонента этого энзима происходит почти во всех случаях злокачественной трансформации и рака поздней стадии. Теломерная гипотеза старения и бессмертия постулирует, что достаточная потеря теломеров на одной или нескольких хромосомах в нормальных соматических клетках спо- собствует клеточному старению, в то время, как реактивация энзима необходима для бессмертия клетки. Проведены змерения длины теломеров и активности теломеразы при раке и в ходе нормального и ускоренного старения в коже, крови, гематопоэтических клетках, клетках скелетной мускулатуры, сосудистых и центральной нервной системы . Исследования в культуре клеток старения и трансформации увеличили наше понимание динамики теломеров в этом процессе. Изменения в репрессии теломеразы и смертности соматических клеток у долгоживущих организмов согласуются с антогонистичными плейортропными моделями, в которых клеточное старение является супрессором механизмом для рака: Обязательное подавление теломеразы имеет благоприятный ранний эффект по уменьшению вероятности рака, но вредный неселективный поздний эффект, связанный с его вкладом в эту связанную с возрастом болезнь/13/. Молулярная регуляция длины теломеров была объяснена серией элегантных исследований в течение последней декады. В более недавнее время были получены данные по вопросам о том вносит ли вклад регуляция длины теломеров в нормальный процесс старения или болезни у человека и как именно она это делает. Последние исследования на мышах выявили прецендент у млекопитающих, указывающий на то, что дефицит теломеразы может вести к дисфункции in vivo, наиболее вероят