Архив рубрики: Python

SQL и Python: Как применяются вместе?

Python –  на данный момент один из самых популярных ЯП, и многие хотят его понять и выучить.

Возникает вопрос – с чего начать?

В этой краткой статье мы расскажем обо всем, что вам нужно знать, чтобы начать учить python, в том числе руководство и план обучения, а также несколько полезных ресурсов, которые помогут вам добиться выполнения этой задачи.

Читать

Django. Создаём простейшую CRM

Эту статью пишу специально для аргументации идей, изложенных в моей книге: realbigdata.ru. Цель описанной далее работы — оценить скорость создания собственной CRM с минимальным функционалом (спойлер: меньше часа). Читать

Что такое “self” в Python?

В языке Python “self” обозначает сам объект класса. С его помощью можно получить доступ к атрибутам и методам класса.

Зеленый круг с надписью Class. Из него выходит и в него же возвращается синяя стрелка, подписанная как self.

Например, класс Fruit при создании присваивает себе пользовательские имя и цвет (name и color). Затем к ним можно будет получить доступ с помощью метода info():

class Fruit:
    def __init__(self, name, color):
        self.name = name
        self.color = color
    
    def info(self):
        print(self.color, self.name)
    
banana = Fruit("Banana", "Yellow")
banana.info()

# Вывод:
# Yellow Banana

Чтобы понять, как это работает, давайте подробнее разберемся с “self” в Python. Это руководство предназначено для тех, кто уже знаком с классами, но кому понятие “self” кажется несколько туманным.

Ключевое слово “self” в Python

В Python класс – это схема для создания объектов.

Каждый объект Python является представителем некоторого класса. В Python объект также называется экземпляром класса. Если вы хотите создать объект в Python, у вас должен быть класс, на основе которого вы можете его создать.

Типичный класс Python состоит из методов, которые выполняют действия на основе атрибутов, присвоенных объекту.

Например, класс Weight может хранить килограммы и иметь возможность конвертировать их в фунты.

В классе Python параметр self ссылается на сам экземпляр класса. Это полезно, поскольку в противном случае не было бы возможности получить доступ к атрибутам и методам класса.

Пример: класс Fruit

Чтобы лучше понять роль “self” в классе, давайте рассмотрим простой класс Fruit. Он позволяет создавать объекты Fruit с пользовательскими именем и цветом (name и color):

class Fruit:
    def __init__(self, name, color):
        self.name = name
        self.color = color
    
    def info(self):
        print(self.color, self.name)

Теперь вы можете создавать объекты Fruit. Делается это так:

banana = Fruit("Banana", "Yellow")
apple = Fruit("Apple", "Red")

И вы можете вывести информацию, связанную с ними:

banana.info()
apple.info()

Вывод:

Yellow Banana
Red Apple

Как работает “self” в этом примере?

Рассмотрим, как работает класс Fruit.

При создании нового объекта Fruit под капотом вызывается метод __init__. Он отвечает за создание объектов. Этот метод принимает три аргумента:

  1. self
  2. name
  3. color

При создании объекта Fruit метод __init__ вызывается с пользовательскими именем и цветом. Обратите внимание, что вам не нужно передавать self в качестве аргумента. Python делает это автоматически.

Таким образом, при вызове banana = Fruit("Banana", "Red"):

  • Метод __init__ начинает инициализацию объекта Banana с заданными аргументами name и color.
  • Он создает новые атрибуты self.name и self.color и сохраняет в них введенные данные name и color.
  • После этого можно получить доступ к атрибутам Banana name и color в любом месте объекта через self.name и self.color.

Посмотрим также, что произойдет при вызове banana.info().

Когда вы вызываете banana.info(), Python автоматически передает self в вызов метода в качестве аргумента. После этого метод info() может использовать self для доступа к атрибутам объекта name и color. Без self он не смог бы этого сделать.

В Python “self” может содержать что угодно

Зеленый круг Class. Внутрь круга, к слову self, ведут стрелки извне, от слов name, age, height, weight, sayHi(), showInfo(), add().

Ранее вы видели, как параметр self может использоваться для хранения атрибутов объектов.

Точнее, вы увидели типичный подход, когда вы передаете __init__ аргументы метода и присваиваете их self с помощью того же имени:

def __init__(self, name, color):
    self.name = name
    self.color = color

В связи с этим может возникнуть вопрос: “Должны ли имена аргументов совпадать с теми, что присваиваются self?”. Ответ – нет.

Подобно тому, как в Python можно создать любую переменную в любом месте, через self вы можете присвоить объекту любые атрибуты.

Это означает, что вы можете хранить в self любые значения с любыми именами. Их даже не обязательно передавать в качестве аргументов в метод __init__.

Пример: класс Point

Например, создадим класс Point, представляющий точку в трехмерном пространстве. Давайте инициализируем объекты Point в начале координат, не запрашивая координаты в качестве аргументов при инициализации.

Для этого необходимо присвоить xy и z значения 0 для self в методе __init__:

class Point:
    def __init__(self):
        self.x = 0
        self.y = 0
        self.z = 0

Теперь можно создавать объекты Point, привязанные к началу координат:

p = Point()
print(p.x, p.y, p.z)

# Вывод:
# 0 0 0 

Этим мы хотим продемонстрировать, как можно свободно добавлять любые атрибуты к свойству объекта self.

Может ли метод не иметь аргумента “self”?

В Python метод нуждается в аргументе self. В противном случае он не знает, к какому классу принадлежит, и не может выполнять над ним действия.

Чтобы посмотреть, что произойдет, если метод не будет принимать аргумент self , давайте пропустим его в методе info() :

class Fruit:
    def __init__(self, name, color):
        self.name = name
        self.color = color
    
    def info():
        print(self.color, self.name)
banana = Fruit("Banana", "Yellow")
banana.info()

Вывод:

Traceback (most recent call last):
  File "main.py", line 10, in <module>
    banana.info()
TypeError: info() takes 0 positional arguments but 1 was given

Последняя строка говорит о том, что метод info() не принимает аргументов, а мы передали один. Но, судя по приведенному выше коду, мы не передавали никаких аргументов. Так почему же интерпретатор думает, что мы это сделали?

Даже если вы не передаете методу info() никаких аргументов,  Python автоматически пытается внедрить self в вызов. Это происходит потому, что Python знает, что для корректной работы все методы класса должны иметь ссылку на сам класс. Но в нашей реализации info() нет аргумента self. Поэтому передача в нее аргумента self за кулисами не удастся.

Это показывает, что в методах необходимо использовать аргумент self.

Доказательство того, что “self” относится к самому объекту

Для наглядности докажем, что self действительно относится к самому объекту.

Для этого проверим расположение в памяти self и объекта Fruit.

В языке Python адрес объекта в памяти можно проверить с помощью функции id(). Класс Fruit упрощен для облегчения восприятия.

class Fruit:
    def __init__(self):
        print("Self address =", id(self))
 
fruit = Fruit()
print("Object address =", id(fruit))

Вывод:

Self address = 140243905604576
Object address = 140243905604576

Как видно, адреса памяти одинаковы. Это говорит о том, что self внутри класса Fruit указывает на тот же адрес, что и объект fruit, который вы только что создали. Другими словами, параметр self действительно ссылается на сам объект.

Ключевое слово “self” не является зарезервированным в Python

Обратите внимание, что self не является зарезервированным ключевым словом в Python. Вместо него можно использовать любое имя, лишь бы оно было.

Зеленый круг, подписанный Class. Из него выходит и в него же возвращается синяя стрелка с рядом подписей на выбор: self, this, me, myself, whatever.

Например, изменим реализацию класса Fruit из предыдущих разделов. На этот раз вместо имени self будем использовать this:

class Fruit:
    def __init__(this, name, color):
        this.name = name
        this.color = color
    
    def info(this):
        print(this.color, this.name)
banana = Fruit("Banana", "Yellow")
apple = Fruit("Apple", "Red")

Этот код работает точно так же, как и тот, в котором используется self.

Но поскольку Python-разработчики чаще всего используют self, не рекомендуется использовать другие слова. При работе с классами в Python вы вряд ли столкнетесь с чем-то еще, кроме self.

Заключение

Сегодня вы узнали, что “self” делает в классе Python.

Напомним, что self в Python обозначает сам объект. Благодаря ему класс знает, как получить доступ к своим собственным атрибутам и методам.

При создании объекта вызывается метод __init__. В этом методе обычно присваиваются атрибуты экземпляру класса через self.

Обратите внимание, что “self” не является зарезервированным ключевым словом. Вместо него можно использовать любое другое слово, если передавать его в качестве первого аргумента для каждого метода класса. Однако  “self” настолько часто используется, что не следует использовать что-либо другое, даже если это возможно.

Спасибо, что прочитали. Надеюсь, вы нашли то, что искали. Удачного кодинга!

Перевод статьи «What Is ‘self’ in Python? A Complete Guide (with Examples)».

Сообщение Что такое “self” в Python? появились сначала на pythonturbo.


Source: pythonturbo.ru

Как переключаться между версиями Python

Чтобы вернуться к более старой версии Python и установить ее по умолчанию, вы можете использовать update-alternatives в системах на базе Debian или манипулировать символическими ссылками. Вот как: Читать

Библиотека urllib в Python

В этой статье мы вам расскажем, как библиотека urllib применяется в Python для веб-скреппинга, выполнения API-запросов и т.д. Вы познакомитесь с модулями urllib и лучшими практиками использования этой библиотеки.

Содержание

Введение в urllib

Urllib – это библиотека Python, предоставляющая набор модулей для работы с URL (Uniform Resource Locators). Она позволяет взаимодействовать с веб-ресурсами, выполняя HTTP-запросы, разбирая URL и обрабатывая различные аспекты веб-коммуникаций.

Зачем нужна библиотека urllib? Это мощный инструмент для решения веб-задач на языке Python. Библиотека широко используется для веб-скреппинга, выполнения API-запросов, загрузки файлов из Интернета и т.д. С помощью urllib можно автоматизировать различные процессы, связанные с веб, что делает ее незаменимой библиотекой для веб-разработчиков и специалистов по исследованию данных.

Установка urllib

Urllib входит в состав стандартной библиотеки Python, поэтому ее не нужно устанавливать отдельно. Вы можете начать использовать ее, импортировав соответствующие модули в свой Python-скрипт.

Эта библиотека доступна как в Python 2, так и в Python 3, однако его использование может несколько отличаться в разных версиях. Рекомендуется использовать Python 3, так как Python 2 больше не поддерживается.

Модули urllib

Библиотека urllib состоит из нескольких модулей, каждый из которых выполняет определенную задачу. Рассмотрим основные из них.

urllib.request

Модуль urllib.request предоставляет функции для выполнения HTTP-запросов, включая GET- и POST-запросы, и обработки ответов.

import urllib.request

# Пример: отправка GET-запроса
response = urllib.request.urlopen('https://example.com')
html = response.read()
print(html)

urllib.parse

Модуль urllib.parse предназначен для парсинга URL-адресов. Он разбивает их их на такие компоненты, как scheme, netloc, path, query и fragment.

import urllib.parse

# Пример: парсинг URL
url = 'https://www.example.com/path?param=value'
parsed_url = urllib.parse.urlparse(url)
print(parsed_url)

urllib.error

Модуль urllib.error обрабатывает исключения и ошибки, которые могут возникать при выполнении HTTP-запросов.

import urllib.error

try:
    response = urllib.request.urlopen('https://nonexistent-url.com')
except urllib.error.HTTPError as e:
    print(f'HTTP Error: {e.code}')
except urllib.error.URLError as e:
    print(f'URL Error: {e.reason}')

urllib.robotparser

Модуль urllib.robotparser используется для разбора файлов robots.txt, чтобы проверить, разрешен ли доступ веб-краулеру к определенным частям сайта.

import urllib.robotparser

rp = urllib.robotparser.RobotFileParser()
rp.set_url('https://example.com/robots.txt')
rp.read()
allowed = rp.can_fetch('MyCrawler', 'https://example.com/page')
print(allowed)

Основные HTTP-запросы

Отправка GET-запросов

Получение веб-содержимого при помощи GET-запросов – одна из основных операций в urllib.

import urllib.request

response = urllib.request.urlopen('https://example.com')
html = response.read()
print(html)

Отправка POST-запросов

POST-запросы служат для отправки данных на сервер. Они часто используются в веб-формах.

import urllib.request
import urllib.parse

data = urllib.parse.urlencode({'param1': 'value1', 'param2': 'value2'}).encode('utf-8')
response = urllib.request.urlopen('https://example.com/post', data=data)
html = response.read()
print(html)

Работа с HTTP-ответами

Вы можете получить доступ к различным свойствам HTTP-ответа, таким как код состояния, заголовки и содержимое.

import urllib.request

response = urllib.request.urlopen('https://example.com')
status_code = response.getcode()
headers = response.info()
html = response.read()
print(f'Status Code: {status_code}')
print(f'Headers: {headers}')
print(html)

Обработка ошибок HTTP

Urllib обеспечивает обработку ошибок, связанных с HTTP, таких как 404 Not Found или ошибки подключения.

import urllib.error

try:
    response = urllib.request.urlopen('https://nonexistent-url.com')
except urllib.error.HTTPError as e:
    print(f'HTTP Error: {e.code}')
except urllib.error.URLError as e:
    print(f'URL Error: {e.reason}')

Работа с URL-адресами

Парсинг URL-адресов

При помощи модуля urllib.parse можно разобрать URL на составляющие.

import urllib.parse

url = 'https://www.example.com/path?param=value'
parsed_url = urllib.parse.urlparse(url)
print(f'Scheme: {parsed_url.scheme}')
print(f'Netloc: {parsed_url.netloc}')
print(f'Path: {parsed_url.path}')
print(f'Query: {parsed_url.query}')

Конструирование URL-адресов

Вы можете конструировать URL, комбинируя их компоненты с помощью urllib.parse.urlunparse() или добавляя параметры запроса к существующему URL.

import urllib.parse

components = ('https', 'example.com', 'path', '', 'param=value', '')
constructed_url = urllib.parse.urlunparse(components)
print(constructed_url)

Продвинутые приемы использования urllib

Работа с файлами cookie

Urllib может работать с cookies с помощью модуля http.cookiejar. Он позволяет управлять данными сессии между запросами.

import urllib.request
import http.cookiejar

# Create a cookie jar to store cookies
cookie_jar = http.cookiejar.CookieJar()
# Create an opener with the cookie jar
cookie_handler = urllib.request.HTTPCookieProcessor(cookie_jar)
opener = urllib.request.build_opener(cookie_handler)
# Make a GET request to a website that sets cookies
url = 'https://httpbin.org/cookies/set?cookie1=value1&cookie2=value2'
response = opener.open(url)
# Check if cookies have been received and stored
if cookie_jar:
    print("Cookies Received:")
    for cookie in cookie_jar:
        print(f"{cookie.name}: {cookie.value}")

Работа с заголовками

Вы можете манипулировать HTTP-заголовками для включения в запросы дополнительной информации, например, User-Agent или пользовательских заголовков.

import urllib.request

url = 'https://example.com'
headers = {'User-Agent': 'My User Agent'}
req = urllib.request.Request(url, headers=headers)
response = urllib.request.urlopen(req)

Работа с перенаправлениями

Urllib может автоматически следовать за HTTP-перенаправлениями. При необходимости это поведение можно отключить.

import urllib.request

# Create a Request object with a URL that redirects
url = 'http://www.example.com'  # This URL redirects to 'https://www.example.com'
req = urllib.request.Request(url, headers={'User-Agent': 'My User Agent'})
# Open the URL without following redirects
response = urllib.request.urlopen(req, allow_redirects=False)
# Check the response status code to see if it's a redirect
if response.status == 302 or response.status == 301:
    print(f'Redirect detected: Status Code {response.status}')
else:
    final_url = response.geturl()  # Get the final URL
    print(f'Final URL: {final_url}')

Работа с тайм-аутами

Вы можете установить тайм-ауты для HTTP-запросов, чтобы предотвратить их бесконечное зависание.

import urllib.request
import urllib.error

url = 'https://example.com'
try:
    response = urllib.request.urlopen(url, timeout=10)  # Set a timeout of 10 seconds
    html = response.read()
    print(html)
except urllib.error.URLError as e:
    if isinstance(e.reason, socket.timeout):
        print("Request timed out.")
    else:
        print(f"URL Error: {e.reason}")

Веб-скрепинг с помощью urllib

Получение HTML-содержимого

Urllib можно использовать для веб-скрапинга, посылая GET-запросы на сайты и получая HTML-контент.

import urllib.request

url = 'https://example.com'
response = urllib.request.urlopen(url)
html = response.read()

Парсинг HTML с помощью BeautifulSoup

Для извлечения данных из HTML можно объединить urllib с библиотекой типа BeautifulSoup.

import urllib.request
from bs4 import BeautifulSoup

# Send a GET request to a web page and retrieve its HTML content
url = 'https://example.com'
response = urllib.request.urlopen(url)
html = response.read()
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
# Find and print a specific element from the HTML (e.g., the page title)
title_element = soup.find('title')
if title_element:
    print('Page Title:', title_element.text)
else:
    print('Title not found on the page.')

Сбор данных с веб-страниц

Вы можете собирать данные с веб-страниц, определяя нужные HTML-элементы и извлекая их содержимое с помощью BeautifulSoup.

import urllib.request
from bs4 import BeautifulSoup

# URL of the web page to scrape
url = 'https://example-news-site.com'

# Send an HTTP GET request to the URL
response = urllib.request.urlopen(url)

# Read the HTML content of the page
html = response.read()

# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')

# Find and extract article titles
article_titles = []

# Assuming article titles are in h2 tags with a specific class
for h2_tag in soup.find_all('h2', class_='article-title'):
    article_titles.append(h2_tag.text)

# Print the extracted article titles
for title in article_titles:
    print(title)

Примечание редакции: на тему скрапинга читайте также “Скрапинг с помощью Python и Selenium”.

Библиотека urllib и работа с API

Выполнение GET-запросов к API

С помощью urllib можно выполнять GET-запросы к API и получать данные.

import urllib.request

api_url = 'https://api.example.com/data'
response = urllib.request.urlopen(api_url)
data = response.read()
# Parse the JSON response if applicable.

Выполнение POST-запросов к API

Аналогичным образом можно отправлять POST-запросы к API, включив необходимые данные в тело запроса.

import urllib.request
import urllib.parse

data = urllib.parse.urlencode({'param1': 'value1', 'param2': 'value2'}).encode('utf-8')
api_url = 'https://api.example.com/data'
response = urllib.request.urlopen(api_url, data=data)
data = response.read()
# Parse the JSON response if applicable.

Работа с ответами в формате JSON

Многие API-интерфейсы возвращают данные в формате JSON, поэтому для их анализа и работы с ними можно использовать модуль json языка Python.

import urllib.request
import json

api_url = 'https://api.example.com/data'
response = urllib.request.urlopen(api_url)
data = json.loads(response.read().decode('utf-8'))

Скачивание файлов

Загрузка файлов из Интернета

Вы можете использовать urllib для загрузки файлов из Интернета, например, изображений, PDF-файлов или других документов.

import urllib.request

file_url = 'https://example.com/file.pdf'
urllib.request.urlretrieve(file_url, 'downloaded_file.pdf')

Обработка загрузки больших файлов

Для загрузки больших файлов можно использовать потоковый подход для экономии памяти.

import urllib.request

file_url = 'https://example.com/large_file.zip'
with urllib.request.urlopen(file_url) as response, open('downloaded_file.zip', 'wb') as out_file:
    while True:
        data = response.read(4096)
        if not data:
            break
        out_file.write(data)

Лучшие практики

Обработка ошибок

Всегда обрабатывайте исключения и ошибки при выполнении HTTP-запросов или работе с URL-адресами, чтобы обеспечить надежность кода.

import urllib.error
import urllib.request

try:
    response = urllib.request.urlopen('https://nonexistent-url.com')
except urllib.error.HTTPError as e:
    print(f'HTTP Error: {e.code}')
except urllib.error.URLError as e:
    print(f'URL Error: {e.reason}')
else:
    # Code to execute if there are no errors
    html = response.read()
    print(html)

Заголовки User-Agent

Устанавливайте в запросах заголовок User-Agent для идентификации вашего скрипта или приложения при взаимодействии с веб-сайтами или API.

import urllib.request

# Define the User-Agent header
user_agent = 'My Custom User Agent'
# Create a request object with the User-Agent header
url = 'https://example.com'
headers = {'User-Agent': user_agent}
req = urllib.request.Request(url, headers=headers)
# Send the request
response = urllib.request.urlopen(req)
# Now you can work with the response as needed
html = response.read()
print(html)

Соблюдайте правила Robots.txt

Прежде чем приступать к скраппингу, проверьте файл robots.txt сайта, чтобы узнать, разрешен ли скраппинг, и следуйте правилам, чтобы избежать юридических проблем.

import urllib.robotparser

# Create a RobotFileParser object and specify the URL of the website's robots.txt file.
rp = urllib.robotparser.RobotFileParser()
rp.set_url('https://example.com/robots.txt')
# Read and parse the robots.txt file.
rp.read()
# Check if it's allowed to crawl a specific URL.
is_allowed = rp.can_fetch('MyCrawler', 'https://example.com/some-page')
if is_allowed:
    print("Crawling is allowed for this URL.")
else:
    print("Crawling is not allowed for this URL according to robots.txt.")

Ограничение скорости

При выполнении запросов к API следует соблюдать все политики ограничения скорости, чтобы не перегружать сервер.

import urllib.request
import time

# Define the API URL and the rate limit (requests per minute)
api_url = 'https://api.example.com/data'
rate_limit = 60  # 60 requests per minute
# Function to make an API request with rate limiting
def make_api_request_with_rate_limit(url):
    # Calculate the time interval between requests
    time_interval = 60 / rate_limit  # 60 seconds in a minute
    time_since_last_request = time.time() - last_request_time
    if time_since_last_request < time_interval:
        time.sleep(time_interval - time_since_last_request)
    response = urllib.request.urlopen(url)
    return response.read()
# Initialize the time of the last request
last_request_time = time.time()
# Make API requests with rate limiting
for _ in range(10):  # Make 10 requests
    data = make_api_request_with_rate_limit(api_url)
    print(data)
# Update the time of the last request
last_request_time = time.time()

Заключение

Urllib – это универсальная библиотека на языке Python, позволяющая работать с URL-адресами, выполнять HTTP-запросы и эффективно взаимодействовать с веб-ресурсами. Если вы собираете данные с сайтов, взаимодействуете с API или загружаете файлы из Интернета,  эта библиотека вам точно пригодится. Познакомившись с ее модулями, вы сможете использовать всю ее мощь для решения задач, связанных с веб.

Перевод статьи «urllib in Python».

Сообщение Библиотека urllib в Python появились сначала на pythonturbo.


Source: pythonturbo.ru

Наиболее используемые функции Pandas

Pandas – одна из самых популярных и используемых библиотек Python. Функций в ней так много, что бывает трудно запомнить все. Но запомнить основые вполне возможно. В этой статье мы рассмотрим некоторые функции Pandas из числа наиболее используемых.

1. Считывание CSV-файла

Существует множество случаев, когда данные представлены в CSV-файле. Для загрузки таких файлов мы используем функцию read_csv(). Она имеет следующие параметры:

  • filepath – адрес файла для чтения в кавычках
  • sep для указания разделителя (по умолчанию – запятая)
  • header для указания номера строки, содержащей метки столбцов
  • names  (опциональный) для явного указания меток столбцов
  • index_col (опциональный) для указания, какой столбец используется в качестве меток строк

Пример:

df = pd.read_csv('train.csv')

Примечание редакции: подробнее о чтении CSV читайте в статье “Как прочитать CSV-файл в Python”.

2. head() и tail()

Для отображения первых и последних строк данных мы используем функции head() и tail() соответственно. Мы можем указать, сколько строк нужно вывести, передав число в функцию. По умолчанию она выводит пять строк.

Эти функции очень удобны для просмотра больших наборов данных, поскольку избавляет от необходимости прокрутки всего набора.

Вывод первых строк:

df.head()

Результат:

Таблица из пяти строк - вывод функции df.head() без указания количества выводимых строк.

Вывод двух последних строк:

df.tail(2)

Результат:

Таблица из двух строк, результат работы функции df.tail(2)

3. Shape

Для отображения размеров DataFrame, т.е. количества строк и столбцов, мы используем атрибут shape.

df.shape

# Результат:
#(891, 12)

4. info()

Эта функция используется для отображения информации о DataFrame, такой как номера, метки и типы данных столбцов, использование памяти, индекс диапазона и количество значений в каждом столбце (ненулевые значения).

df.info()
Вывод функции df.info()

Функция info() выводит общее количество записей в данных вместе с диапазоном. Приведенные данные имеют 11 столбцов, которые относятся к типам float, int и object (string). Они занимают 83,7 КБ памяти.

5. Describe

С помощью функции Pandas describe() мы можем вывести множество статистических значений в нескольких столбцах при помощи всего одной строки кода.

Для непрерывных переменных эта функция возвращает количество, среднее значение, медиану, стандартное отклонение, 25-й и 75-й процентили, максимальное и минимальное значения.

df.describe()
Вывод функции Pandas describe(): таблица на 7 столбцов

Функция describe() имеет параметр percentiles, в котором мы можем указать перцентили, которые хотим включить в вывод.

По умолчанию функция выдает статистическую сводку только для числовых переменных. Для отображения других переменных можно указать параметр include.

df.describe(include='all')

Результат:

Вывод функции df.describe(include='all'). Таблица на 12 столбцов.

Для категориальных переменных функция возвращает общее количество, количество уникальных значений, наиболее частое значение и его частоту.

Мы можем указать, хотим ли мы отображать только столбцы одного типа, например, числовые, объектные или категориальные. Давайте выведем только строковые:

df.describe(include = [np.object])
# используйте include = ['category'] для категориальных столбцов
# используйте include = [np.number] для числовых столбцов

Результат:

Таблица на 5 столбцов и 4 строки

Мы также можем использовать describe() для конкретного столбца (столбцов). Если же мы хотим удалить некоторые столбцы из сводки статистики, можно использовать параметр exclude.

6. value_counts

Для вычисления и отображения частотности каждого значения в столбце DataFrame используется функция value_counts().

df['Survived'].value_counts()

# Результат:
# 0    549
# 1    342
# Name: Survived, dtype: int64

Мы можем получить процентные значения для каждого уникального элемента в столбце, используя аргумент normalize=True.

df['Survived'].value_counts(normalize=True)*100

# Результат:
# 0    61.616162
# 1    38.383838
# Name: Survived, dtype: float64

Для наглядного представления чисел можно вывести график:

df['Survived'].value_counts(normalize=True).plot.bar()
Столбцовая диаграмма на два столбца: 0 и 1

7. Drop

Иногда нам необходимо удалить из данных некоторые столбцы и строки. Для этого используется функция drop().

С помощью параметра axis мы можем сообщить, столбец это или строка.

# столбец
df.drop(['Ticket'], axis=1, inplace=True)

# строка
df.drop(3, axis=0, inplace=True

Как вы уже поняли, axis=1 указывает на столбец, а axis=0 – на строку. inplace=True означает, что изменения сохраняются в исходном DataFrame.

8. Columns

Для отображения имен столбцов в DataFrame мы используем атрибут columns.

df.columns


# Результат:
# Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
#        'Parch', 'Fare', 'Cabin', 'Embarked'],
#       dtype='object')

9. rename()

Часто имена столбцов имеют нестандартный формат. Чтобы их изменить, мы используем функцию rename(). Для этого в функцию нужно передать текущее имя столбца и его новое имя:

df.rename(columns={'PassengerId' : 'ID'}, inplace=True)

Примечание редакции: об этом и других изменениях в столбцах читайте в статье “Обновление строк и столбцов в Pandas”.

10. unique() и nunique()

Для нахождения всех уникальных значений в столбце используется функция unique(), а для нахождения их количества – функция nunique().

df['Embarked'].unique()

# array(['S', 'C', 'Q', nan], dtype=object)

df['Embarked'].nunique()

# 3

Функция unique() включает значения nan, а функция unique() исключает их.

Перевод статьи «The Most Used Functions of Pandas».

Сообщение Наиболее используемые функции Pandas появились сначала на pythonturbo.


Source: pythonturbo.ru