Это конспект доклада для семинара, проведённого нашей LUG совместно с университетом.
У меня, натурально, было 10 минут, поэтому изложение — галопом по европам, многое упрощено, многое упущено.
Немного истории
Относительно подробную историю создания ядра Linux можно найти в известной книге Линуса Торвальдса «Just for fun». Нас из неё интересуют следующие факты:
- Ядро создал в 1991 году студент университета Хельсинки Линус Торвальдс;
- В качестве платформы он использовал ОС Minix, написанную его преподавателем Эндрю Таненбаумом, запущенную на персональном компьютере с процессором Intel 80386;
- В качестве примера для подражания он использовал ОС семейства Unix, а в качестве путеводителя — сначала стандарт POSIX, а затем просто исходные коды программ из комплекта GNU (bash, gcc и пр).
Эти факты в значительной мере определили пути развития ядра в дальнейшем, их следствия заметны и в современном ядре.
В частности, известно, что Unix-системы в своё время разделились на два лагеря: потомки UNIX System V Release 4 (семейство SVR4) против потомков Berkley Software Distribution v4.2 (BSD4.2). Linux по большей части принадлежит к первому семейству, но заимствует некоторые существенные идеи из второго.
Ядро в цифрах
- Около 30 тыс. файлов
- Около 8 млн. строк кода (не считая комментариев)
- Репозиторий занимает около 1 Гб
- linux-2.6.33.tar.bz2: 63 Mb
- patch-2.6.33.bz2: 10Mb, около 1.7 млн изменённых строк
- Около 6000 человек, чей код есть в ядре
Об архитектуре ядра
Все (или почти все) процессоры, которыми когда-либо интересовались производители Unix-подобных ОС, имеют аппаратную поддержку разделения привелегий. Один код может всё (в т.ч. общаться напрямую с оборудованием), другой — почти ничего. Традиционно говорят о «режиме ядра» (kernel land) и «режиме пользователя» (user land). Различные архитектуры ядер ОС различаются прежде всего подходом к ответу на вопрос: какие части кода ОС должны выполняться в kernel land, а какие — в user land? Дело в том, что у подавляющего большинства процессоров переключение между двумя режимами занимает существенное время. Выделяют следующие подходы:
- Традиционный: монолитное ядро. Весь код ядра компилируется в один большой бинарный файл. Всё ядро исполняется в режиме ядра;
- Противоположный, новаторский: микроядро. В режиме ядра выполняются только самые необходимые части, всё остальное — в режиме пользователя;
- В традиционном подходе позже появился вариант: модульное ядро. Всё исполняется в режиме ядра, но при этом ядро компилируется в виде одного большого бинарного файла и кучки мелких модулей, которые могут загружаться и выгружаться по необходимости;
- И, конечно, всевозможные варианты гибридных архитектур.
Ядро Linux начиналось как монолитное (глядя на существовавшие тогда Unix-ы). Современное Linux-ядро модульное. По сравнению с микроядром монолитное (или модульное) ядро обеспечивает существенно бо́льшую производительность, но предъявляет существенно более жёсткие требования к качеству кода различных компонентов. Так, в системе с микроядром «рухнувший» драйвер ФС будет перезапущен без ущерба для работы системы; рухнувший драйвер ФС в монолитном ядре — это Kernel panic и останов системы.
Подсистемы ядра Linux
Существует довольно широко известная диаграмма, изображающая основные подсистемы ядра Linux и их взаимодействие. Вот она:
:
Собственно, в настоящий момент видно только, что частей много и их взаимосвязи очень сложные. Поэтому мы будем рассматривать упрощённую схему:
:
Системные вызовы
Уровень системных вызовов — это наиболее близкая к прикладному программисту часть ядра Linux. Системные вызовы предоставляют интерфейс, используемый прикладными программами — это API ядра. Большинство системных вызовов Linux взяты из стандарта POSIX, однако есть и специфичные для Linux системные вызовы.
Здесь стоит отметить некоторую разницу в подходе к проектированию API ядра в Unix-системах с одной стороны и в Windows[NT] и других идеологических потомках VMS с другой. Дизайнеры Unix предпочитают предоставит